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Abstract: Expected lifetime is an important vaue for investors or risk managers in American
and mogt exotic options because the contractua expiry is only the maximum expiry where the
contract can end. Indeed, if in the case of a vanilla option, the lifetime is equa to the maturity,
because the contract may only be exercised a his contractud expiry, that is not the case for
American (and mogt exotic) options since they may be exercised earlier than their maximum
expiry. In this atide, a numericd method is provided, to vdue the lifetime distribution of
American and most common exotic options. As the gpproach is based on a tree, volatility
amile, dividends and severa underlying assets can easly be taken into account. As a matter of
fact, the given explanations are for option on index, shares, exchange rate. But exactly the
same agorithm can be applied on interest rate trees.
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Estimating the Lifetime Distribution of Options
by a Numerical Approach

One of the most important concepts for investors or risk managers is the lifetime
digribution of options. This information can be usad in severd ways ether in the hedging of
an option or in a seculative drategy. Heredfter, only two examples are mentioned, among al,
in order to present how one can ded with the expected lifetime of an option. The fird
example is based on the buyer of an American put option, expiring @t the most) in one yesar,
who wants to insure a given portfolio. Then, the owner of the put is not insured during the
whole period, but until the exercise occurs. Going on insuring his portfolio will probably
conduce him into buying another put option. Therefore, investing in an American put, whose
expected lifetime is equa to one year, would certainly be more efficient. The second proposed
example is typicd of the volatility trading technique. This time, we condder a trader who is
«ling an American draddle, that is sdling dmultaneoudy an American cdl and an American
put with same drike and expiry. This short postion has not the same lifetime depending on
whether the underlying price rises or fdls. If it fals down, then the cdl is worth nothing and
the put will probably be exercised. Whereas if the price rises, the American put is worth
nothing but the American cal would probably not be exercised and therefore the position can
go on. So, the sengtivity of such an exposure can be high enough in the down way to make
him prefer a strangle with an out of the money put. In order to choose the drike of the put, he
coud appreciate to do it, knowing the attached risk, i.e. the true expected lifetime. For exotic
options like reversd barier ones', the lifeime digtribution is an even more essentid
parameter for a clear understanding of the underlying risk of the contract.

In order to provide the lifetime law of an American option, one needs firg to estimate
the exercise frontier. That is, the vaue of the underlying assat, depending on the time under
(or a@ove) which the option is dways exercised. Because the option is exercised only if the
underlying assst crosses this frontier, the knowledge of the frontier through time is required in
order to edimate the lifetime didribution of an American option. A great ded of authors
dudied this frontier in a continuous time setting (see for example Chesney & Lefall [4]). With
the use of PDE or tree it is Sraightforward to estimate this frontier in a discrete time setting
and by the way of interpolation to provide a correct gpproximation.

Recently, Douady [9] dmultaneoudy sudied the pricing of some exotic options and
ther lifetime didribution. This was done in a continuous time setting and only for options
depending on one risky asset. The study had been led under the hypothess of a geometric
Brownian mation with condant parameters and with the assumption that no cash dividend
could be paid to the owners of the underlying assets.

The following method that we suggest can go beyond al the redrictions due to the
difficulties encountered in usng a continuous time setting, with no high cost of caculation
time, since it is based on a tree. For amplicity, the presentation of the agorithm is restricted
in the case of the well known Cox, Ross and Rubingein [6] (next CRR) tree. Obvioudy, other
tree modds (like [5], [8], [10], [14]) may be used in order to mode other assumptions as it
has been done in the following for rainbow options where the quadrinomia tree of Augros
and Moreno [1] has been employed. So on for interest rate trees if one is interested in the
lifetime distribution of an interest rate option.




The aticle is organized in two pats. In the fird one, the agorithm providing the
lifetime digtribution is exposed whereas in the second one some results are discussed.

|. Estimation of the lifetime distribution of options

Douady, refering to the dmple definition of the duration concerning contracts
contingent to interest rate, used the term of duration to define the expected vdue of the
lifetime of an option. According to hiswork, the same notation will be used heresfter.

The edimation of the lifetime digtribution of options needs severa seps in order to
cdculate the probability of crossng the exercise frontier a a fixed date. Once this result is
obtained, the lifetime didribution of the option can be draghtforwardly assessed. The
following discusson exposed firg the dgorithm leading to the expected results in the case of
American options. Extensions to exotic options will be presented further.

A.Implementing the method

The suggested numerical gpproach is condructed from the binomid tree of CRR. All
extensons of this tree, published since their research work, can be directly integrated into our
dgorithm. But, for amplicity the discusson is voluntary restricted around the initid binomid
modd.

We quickly remind that into this discrete mode, the time to maturity t of the option is

decomposed into N periods of the same length Dt= tﬁ During each time step, the price of the

risky asst ether rises or fals. In the up Sate, the vaue of the underlying has been multiplied

by u= €% wheress in the down State, the price has been multiplied by d = E In the risk
u

e”-d
u-d

During the backward recurson required to vaue the option, the exercise frontier is
spotted. More specificaly, the region where the anticipated exercise appears is marked in
another tree with the vaue 1. Elseawhere, vaues in the tree are set to 0. Therefore, one
possible example could look like this one:

neutral world, the probability p of reaching the up Sateisworth: p =
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figure 1

Because the probability of crossng the exercise frontier has to be estimated in the red
world, the binomid process of S has now to be diffused inside the historicd world. That

means tha this process. ﬁ:rmlt+sdz indead of this one ﬁ:rdt+sdz has to be
S

S
discretiszed. By doing so, the vaues of S indde the binomid tree dont change. But, the
nﬂ -
probability of going upward is transformed to become q = € ot Consequently there is no
u_

need to diffuse the value of the risky assst in the historicd world because only the
probabilities can be changed.

Because the key of the cdculation of the lifetime didribution rests on the estimation of
the future vaue of m a complete sudy of the law of m should be computed. Indeed, the
sengtivity of the duration of an option may be high in reference to the vadue of m

In order to smplify the presentation, the lifetime didribution is not estimated in the
red world but in the risk neutra one. This redly doesnt change the globa property of the
method but only the shape (or moments) of the distribution.

Before introducing the dgorithm, a smple example is given thanks to a three-period®
binomid tree. The tree containing the information of anticipated exercise is supposed to be
the next one:
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figure 2
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Stating from the initid deate, the probability of reaching a node where an exercise
occurs for the first time can be assessed thanks to a forward induction of the tree. Here, these

probabilities are:
e
0< /D (1-p)
O\
0

figure 3

All the next trgectories of S in which the firda move has been upward must not be
taken into account in the caculation of the wanted probabilities because the exercise has been
released at the end of the first move and therefore the option no longer exigs.

The dgorithm to solve this edimation problem can be decomposed in a two-step
process given heregfter. Since the binomid modd is used, the vaues of the wanted
probabilities are dored in a triangular matrix named EndProb(.,.). Two other triangular
matrices P(.,.) and Prob(.,.) are needed to vaue the lifetime digtribution. For al of these, the
point (ni) refers to the following: n, is the number of periods occurred and i, the number of
decreases experienced by the risky asset. The firgt two time steps are developed bel ow:

Number of

decreases
(0,0) » (1,0) » (2,0 0
T (11 \ (2,2) 1
(2,2 2

1% period 2" period 34 period

For a clearer understanding of the agorithm, the probability p has been noted UpProb
whereas the probability (1-p) has been noted DownProb. Prob(.,.) contains either the value 1
or 0 according to whether or not the rode is stated in the exercise area (more generdly above
or under a specified frontier), as shown in figure 1. The vaues of UpProb and DownProb



could of course be time and price depending. The fird sep of the dgorithm is now
introduced :

Step 1: Calculation of P(.,.)
St P(0,0) To 1
From Period=1 To N Do
/ If Prob(Period,1) = 1 Then
P(Period,1) =0
Else
P(Period,1) = P(Period-1,1) * UpProb

FromNode = 1 To Period-1 Do
If Prob(Period,Node) = 1 Then
P(Period,Node) =0
Else
P(Period,Node) = P(Period-1,Node) * UpProb
+ Period-1,Node-1) * DownProb

If Prob(Period,Period) = 1 Then
P(Period,Period) =0

Else
K P(Period,Period) = P(Period- 1,Period-1) * DownProb

Once this matrix calculated, the second step of the algorithm can be proceeded :

Step 2 : Calculation of EndProb
We suppose there is no immediate exercise

Set EndProb To O
From Period=0 To N-2 Do
From Node=0 To Period-1 Do
- /" Jf Prob(Period,Node) = 0 Then
If Prob(Period+1,Node) = 1 Then
If EndProb (Period,Node) > 0 Then
EndProb (Period+1,Node) = EndProb(Period+1,Node)
+ (1- EndProb (Period,Node)) * UpProb
Else
EndProb (Period+1,Node) = EndProb (Period+1,Node)
+ P(Period,Node) * UpProb

If Prob(Period+1,Node+1) = 1 Then
If EndProb(Period,Node) > 0 Then
EndProb(Period+1,Node+1) = EndProb(Period+1,Node+1)
+ (1- EndProb(Period,Node)) * DownProb
Else
k\\ EndProb(Period+1,Node+1) = EndProb(Period+1,Nodet1)
+ P(Period,Node) * DownProb




B. Extracting the lifetime distribution from the EndProb matrix

The dgorithm exposed above immediady leads to the knowledge of the lifeime
digribution. Indeed, the caculated EndProb matrix contains the wanted data The Statement is
illugrated in the case of an American put with a seven time sep tree for which the EndProb
matrix has been written below:

0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
| 0.00 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.13
0.11 0.09
0.00 0.00
0.00
0.00
Period: 1 2 3 4 5 6

With: S=100;K=100;r=5%: ;t =1year ;s =25%.

In that case, the lifetime digribution of the option, in the risk-neutra world and
according to the model employed, is.

Discrete Lifetime Distribution of the American Put (7 Time Steps Trees)
1
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i
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Time
figure4

As a matter of fact, the vadue that the option extinguishes & a given period is worth the
am SEP of dl the vaues contained in the EndProb matrix a the same period™:

SEP(i) = : EndProb(i, j).

j=0

Using more time steps”, the lifetime distribution is taking shape:



Discrete Lifetime Distribution of the American Put Option
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From this reault, it is straightforward to estimate the mean of the lifetime of the option,
i.e. the duration:

. : %1 N :
Duration= Maturity” g[ a SEP(i)+a (tSEP(i))
i=0 @ =0

The dgorithm is convergent because the lifetime didribution is edtimated from the
probability law that the asset price crosses a determinigtic frontier. Now, the binomia mode
of CRR here used ensures the convergence of this (discrete) probability law toward the one
expressed in a continuous time setting. This definitely ensures the convergence of the method.

For the most exotic option, the extension is redly direct. Firdly, whatever the payoff
dructure, the agorithm needs no transformation. Secondly, it is draight to integrate an out
barrier, since this barrier can be consdered as another anticipated exercise frontier. Lastly, the
adgorithm can be extended to options contingent to several underlying or others stochastic
process. All these extendgons are sraightforward enough for not entering into further details
of the necessary adjustments. Only, the principa results are discussed heresfter.

Il. Results

There are 0 many different options and cases that only some main results are studied
in this section. The large amount of collected information shows the impact in the lifetime of
severad aspects like the payment date of a dividend, the vaue of the spot and for 2-color
rainbow options, the impact of the correlation between the returns of two risky assets.

The results for American options are firgt introduced. Then the study is lead with an up
& out call and with rainbow options.

A. American Put Option

American put options can be exercised very prematurely, same during their issue day.
The duration of an American put option has been vaued in function of the spot. The found
senghility of the duration is high like the following graphic reveds



Duration of an American Put Depending on the Spot Price
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withS=.;K=100;r=5%;s =25%;t = 1year.
figure 6

When the spot is worth less than 75, the option is immediately exercised. As a result,
the duration is worth 0. When the spot is definitely up the gSrike then the probability that an
anticipated exercise occurs tends to 0. The drawn inference is that the duration tends towards
1. Between these two ends, the graphic reveds that the duration highly differs when the
option is in the money. A move of 25 % in the spot (100 downward 75) implies a fdl of
100 % of the expected lifetime (83% downward 0).

B. American Call Option with a Cash Dividend

It can be proven that if there is no payable dividend during the life of an American
cdl, then exercising it prematurdy is not efficient (in the Black Scholes world®). As a matter
of fact, Roll [13] proved in 1977 tha the following condition was necessaxy for the
occurrence of an anticipated exercise of an American cal:

r'K
D >
1+r'
where D is the amount of the dividend, and r' the vaue of the forward risk free rate starting
from the date of the payment of the dividend and ending at the expiry of the cdl. So in order
to find a duration different to the expiry, a cash pad dividend has been introduced to study the
duration.

The duration of an American call has been calculated with three different amounts of

dividend in function of their payment date. The results are given in the following graphic:




Duration of an American with Cash Dividend
Depending on the Payment Date
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If the payment of the dividend occurs a the very beginning of the firg day, then it is
not efficient to exercise the option. If the payment date is on the last day then the option won't
be exercised until this day. These two points accounted for the reason why the two ends of
each curves are worth 1.

Unlike the case of an American put option, there are only two dates during which the
American cdl can be exercised. So, the misunderstanding between the duration and the
payment date of the dividend where an anticipated exercise can happen should not be done.
There is certainly no exercise posshility at the date of the duration. As a matter of fact, in the
case here exposed, a trader will probably not use the duration in order to directly hedge his
exposure. But he may find more gppropricte to use the lifetime didribution of the option,
whichis here:

Exemple of a Lifetime Distribution
of an American Call with aDividend
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withS=100;K =100;r=5%;s =25%;t = 1 year ; D=3 % paid in 6 months.
figure 8

To daify the reeson why the use of the lifetime digtribution may be preferred
according to the duraion, an extreme example is developed. If the payment date of the
dividend succeeds the issue date by one day, then the duration may be worth nearly 0.5 year
and the lifeime didribution may be uniformly shared between the payment day of the
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dividend and the expiry of the option. In such a case, a trader will probably consder
separately the two different dates of exercise, respect to their probability, insgead of building a
hedging sirategy for the 0.5 year expected lifetime.

C. European Up & Out Call

Since there is no need in caculation of the exercise frontier, it is eeder and quicker to
compute the adgorithm in the case of an European up & out cdl. In fact, there is no red
difficulty to ded neither with an American up & out cal nor with shark option (barrier option
with an included positive rebate).

Heresfter, the duration has been vaued in function of the dae of the dividend
payment. Depending on this payment date, the duration fals down from 0.56 to 0.46, that is a
close 18 % drop as the following graphic shows:

Duration of an European up & out call depending of the date of the payment of the dividend
0.56

0.55 ]

0.54 ]
0.53 3.

R R e R e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
date of the dividend payment

withS=100;B=110;K=100;r=5%,;s =25% ;t = 1year ; D=3 % paid in X months.
figure 9

The next two curves give an indght into the effect of the paid dividend on the law shape (a
continuous time andyss, with no cash dividend, of this vaue is furnished for example by
both Dana & Jeanblanc-Picqué [8] and Rich[12)]):

Lifetime Distribution of an Up & Out Call With or Without a Dividend
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withS=100;B=110;K=100;r=5%;s =25%;t = 1 year ;D =3 % paid in X months.
(To provide visible distribution shapes, the probabilities that no anticipated exercise occurs have been removed)
figure 10
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Most of the time, the two curves are superimposed. But, at the dividend payment date,
they are clearly different. According to financid theory, when a dividend is pad, the stock
price drops. As the barrier is upward, the effect of the dividend lowers the probability of
reaching the barrier.

Usng the trinomid Cheuk & Vordt's [5] modd would have been more efficient
because the binomia CRR's tree is not redly adapted to price barrier option’. The following
graphic shows the error encountered using the CRR's tree:

Thereis no way leading to this

/ point since the previous oneis

an end one. So at thistime the
barrier is considered not to be
crossed.

< >< up barrier

figure 11

Using a binomiad scheme may conduce to have a probability of reaching the barier at
a certain date worth zero. If instead we used the adapted Cheuk & Vord's trinomiad scheme,
the probabilities are more accurate® :

At each dates, the
probability of crossing
the barrier is positive.

figure 12

As a matter of fact, exactly the same problem occurs with American options since one
is looking for the life time of a crossng of a frontier. By the same way, one can take
advantage of the flexibility of the Cheuk & Vord's tree to solve this difficulty.

D. European Up & In Call

The lifedime of an up & in cdl is worth the maturity of the option whether or not the in
barrier is crossed. Hence there is no reason to study directly the lifetime of an in barier
option. But, on the other hand, the cal is activated only if the spot passes through the barier.
At this time the remaining lifetime of the option is equd to t-tg (with & < t, the date a which
the spot jumps over the barier). But from the sarting time to, this means that the lifetime of
the cdl isworth t. Instead if the spot never cross the barrier, one can consider that the lifetime
of the cal was null.

Usng the dgorithm in the same manner than for the out barier option, the SEP(i)
vaues are edtablished. Remind that SEP(i) is worth the probability of crossng the in barrier at

time t, knowing it never occurred before. This means that with probebility § SEP(i) the
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option has a concrete lifetime worth t and with probability = § SEP(i) the option hes a red

lifetime worth O.

The next graphics shows the probability that the "concrete’ duretion referring to the
initid spot price of the risky asset isworth one

Probability that the Duration = 1 of an Up & In Cdll
Depending of the Spot Price
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o O o o
N A O

|

100 120 140 160 180 200

withB=200;K=100;r=5%;s =25%;t = 1year.
figure 13

As expected, the probability is growing up as the initid gpot price comes nearer to the
in barrier.

E. Rainbow Options

The dgorithm, introduced in the fird section, can eesly be extended to options
depending on several assets’. The chosen example is made with an American two-colors
rainbow put on minimum. The pay off of such an optionis:

payoff =Max{K - Min(s,(t).S,(t ));0}
where S;(t) and Sy(t) are the prices of the two risky assets at the expiry of the option.

The next graphic shows the senshility of the duration respect to the corrdation
between the returns of the two risky assets:
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Duration of an American Put on Minimum of 2 Shares
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withS; =S$=100;K=100;r=5%;s;=52=25%;r =.;t =1lyear.
figure 14

The used vdues of the parameters imply that when the corrdation is perfect, the
duration of this option is worth the one of an American put option on asingle risky asset.

As it has been done for gngle option, the agorithm can be directly generdized to
outside barrier options and other pay off structures with non-constant diffuson parameters.

Conclusion

In this paper, a new method providing the estimation of the lifetime didributions of
the most common American and exotic options has been presented using a tree. Of course,
more generd trees than the one of CRR can be used in order to obtain this digtribution without
changing the adgorithm and the agpplication interest rate options is the same. One of the great
advantages of our methods is that we can ded with non-constant parameters. Trends structure,
volatility smile, dividend and even severa stochegtic characteristics can be taken into account
like it has been done for option contingent to two underlying assets. But the high sengbility—
referring to the parameters of the option — of the vaue of the duration has come to light with
the developed reaults. This implies ether a perfect knowledge of the vaues employed or a
study of the sensihility of the lifetime distribution to those parameters.

1 A nearly complete description of exotic optionscan been found in Nelken [11] for example.
2 |n the risk neutral world, the diffusion process of the risky asset S is assumed to be the following geometric

Brownian motion : E =rdt+s dZ wherer is the risk free rate, s the volatility of the return of Sand Z a
S

standard Brownian motion.

3 Asthelast period is not concerned with anticipated exercise, only the first two periods are studied.

* For American call and put options there is only one value per period of the EndProb matrix that is positive. But

for some exotic options, as double barrier one, two values of EndProb matrix can be positive for agiven period.

® 1500 time steps have been used to estimate this distribution. This cal culation doesn't last more than a second on

apentium |1 350 processor.

® Inthe real world American call options can be prematurely exercised since there are many transactions costs.
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" A complete study of the problem encountered with pricing barrier option with the CRR's binomial tree is
providedin Boyle & Lau's articles.

8 Probabilities of crossing a barrier are correct only in discrete time. But their values are not correct in
continuoustime.

° In this section, the model of Augros & Moreno has been employed. In continuous time and in the risk neutral

d

world, the processes of the 2 risky assets are geometric Brownian motions: —S =rdt+s,dZ, fori=1, 2with
S

dZ,dz, =rdt.
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