
Weather derivatives

Introduction
Evaluating  weather  derivatives  requires  a  different  approach  to  that  used  for
evaluating common financial products. One reason is the difficulty of replication since
temperature,  rainfall  or  wind  is  not  a  traded  asset.  Consequently  delta  neutral
techniques  cannot  be  used  and,  in  addition,  there  is  a  lack  of  liquidity in  some
temperature contracts. Therefore a number of market participants have started to use
an  actuarial  approach  when  dealing  with  weather  derivatives.  Extracting  and
detrending HDD or CDD1 from the data, and then fitting a distribution to the events
makes valuation possible based on the expectation of the loss (example below) plus a
given  risk  premium  that  reflects  the  sensitivity  to  risk.  However,  in  doing  so,  a
number  of  problems  arise.  These  stem from the  fact  from that,  in  most  cases,  a
maximum of 40 years of data is available. Some of these issues include:

- How many years should I take into account?
- Should I detrend the temperature before or after extracting HDD /CDD?
- Were the data correctly detrended and was the forward accurately extracted?
- Is the fitted distribution accurate or appropriate?
- Has there been any change in the distribution in recent years?

Example of “Actuarial” pricing
“Actuarial” pricing methodology is based on extracting the distribution of risk from
historical  values.  The  three  necessary steps  to  obtain  the  fair  value  of  a  weather
contract are illustrated below using Heathrow as a reference site.

Step 1 - Filtration:
First the data are filtered taking into account any trend and extrapolated to the next
year. 
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1 HDD (Heating Degree Days) and CDD (Cooling Degree Days) are indices representing the coldness
and  the  warmth  of  winter  and  summer  respectively.  Other  indices  like  CTD+  CTD-  (Critical
Temperature Days above or below a reference) or GDD (Growing Degree Days) are also commonly
used indices.



Step 2 – Fitting distribution:
Then, a parametric distribution is  fitted to the discrete distribution of risk like the
normal distribution in the next figure:
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Step 3 – Evaluation:
Finally, the price is evaluated using closed formulae.
Because an HDD is a cumulative index, it is possible to break down the price

of a call option2 into an up & out call  and a digital call. This makes them easy to
value.

So, assuming a normal distribution, the price of an up & out call is:
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and a digital call is :
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where  HDDValue is  the  value  for  each  recorded  degree  day  below  the
temperature reference (usually 65F), HDDinf and HDDsup are the strikes of the call
option, Cap = (HDDsup – HDDinf)  HDDValue is the maximum money value of the pay

off,   = infHDD 

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and the standard deviation of the HDD distribution ; N(X;0;1) the standard normal
cumulative distribution function evaluated in X.

Of course, the evaluation strongly depends on the treatment of the data (filtration) and
the  fitted  distribution.  All  these  referred problems  and pitfalls  are  exacerbated  in
portfolio management due to the requirement to estimate multivariate distributions.

2 In the weather market all options are capped. Therefore a call option refers to a call spread .



Temperature simulation
Simulating  the  underlying  index  (temperature,  rainfall,  etc)  becomes  extremely
important because of the constraints above. Instead of merely having forty data points
available, one can recreate the temperature process extracted from 40 * 365 = 14,600
data points. The process can then be simulated thousands of times to simulate the real
distribution of the pay offs of the weather deal.

One can simulate the temperature using the following process:
)(ST ii pARm ii 

Where Ti is the temperature value at time i, Si the seasonality of the temperature at
time i,  mi the  trend of  the  temperature,  i a  sinusoid  function of  i  and AR(p) an
autoregressive process of order p with non identically distributed noise [2].
Fitting it to London data for the period starting the 1st of November and ending the 31st

of March (simulation started the 30th October) we obtain the following distribution:
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The main information that we extract from this distribution is that the forward is different
from the one extracted using detrended HDD (1739 instead of 1702) and that the volatility is
lower than the one extracted (100 instead of 130). There are also some limited differences in
the Skewness and Kurtosis.
Some advantages of the simulation are obvious. When the option has started, there is no
need to value any conditional distribution, as one needs to do in “actuarial” analysis;
the information is contained in the process itself. Other benefits of temperature simulation
lie in portfolio risk management as explained below. 

Portfolio Analysis
E.g. 1) Consider two sites, London and Manchester. These are separated by approximately
180 Miles (roughly 300 km). The correlation one should model for the combined profit and
loss balance of a portfolio of temperature contracts based on these cities is not necessarily
that based on the correlation of the HDD indices. Supposing, for example, that the portfolio
consists of two Critical Temperature (CTD) options, one referring to London and the other
one to Manchester. In this example, the critical temperature reference is set to 34C (93.2F). It
can be seen that over the last forty years the maximum temperature measured in Manchester



is 33.7C and in London 36.5C. Therefore, on a descriptive point of view, one can conclude
that  the Pearson’s correlation between these two indices is zero. In reality we know this
cannot be the case: the underlying processes in both are temperature processes and we know
these to be correlated. 
In this  example, simulation is  key since one can extract  from the  previous  equation the
residues for both sites and separate out the seasonal effects. Clearly, when it is wintertime in
London it is wintertime in Manchester and so the temperature is correlated. But looking at
the residues the view is somewhat different. If we know that the temperature is below its
average in London does this give us any information about the temperature value in
Manchester relative to its own average? With CTD structures this becomes an interesting
correlation since we may not want them to happen simultaneously in both locations.

E.g. 2) Suppose now that your portfolio contains two options related to the same location,
one based on CTD, the other one based on HDD. We can see that the correlation between
these two indices may be very weak even though both indices are derived from the same
temperature processes. This is shown in the figure below: 
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Therefore one needs to use the same temperature values for both locations and not
consider them separately. No convexity would be apparent here if using Pearson’s
correlation.
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This week’s Learning Curve was written by Michael Moreno associate director of
Speedwell  Weather  Derivatives  Limited  and  lecturing  teacher  at  the  French
Management & Actuarial School ISFA.


